Antioxidant Defenses in the Brains of Bats during Hibernation.
نویسندگان
چکیده
Hibernation is a strategy used by some mammals to survive a cold winter. Small hibernating mammals, such as squirrels and hamsters, use species- and tissue-specific antioxidant defenses to cope with oxidative insults during hibernation. Little is known about antioxidant responses and their regulatory mechanisms in hibernating bats. We found that the total level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the brain of each of the two distantly related hibernating bats M. ricketti and R. ferrumequinum at arousal was lower than that at torpid or active state. We also found that the levels of malondialdehyde (product of lipid peroxidation) of the two hibernating species of bats were significantly lower than those of non-hibernating bats R. leschenaultia and C. sphinx. This observation suggests that bats maintain a basal level of ROS/RNS that does no harm to the brain during hibernation. Results of Western blotting showed that hibernating bats expressed higher amounts of antioxidant proteins than non-hibernating bats and that M. ricketti bats upregulated the expression of some enzymes to overcome oxidative stresses, such as superoxide dismutase, glutathione reductase, and catalase. In contrast, R. ferrumequinum bats maintained a relatively high level of superoxide dismutase 2, glutathione reductase, and thioredoxin-2 throughout the three different states of hibernation cycles. The levels of glutathione (GSH) were higher in M. ricketti bats than in R. ferrumequinum bats and were significantly elevated in R. ferrumequinum bats after torpor. These data suggest that M. ricketti bats use mainly antioxidant enzymes and R. ferrumequinum bats rely on both enzymes and low molecular weight antioxidants (e.g., glutathione) to avoid oxidative stresses during arousal. Furthermore, Nrf2 and FOXOs play major roles in the regulation of antioxidant defenses in the brains of bats during hibernation. Our study revealed strategies used by bats against oxidative insults during hibernation.
منابع مشابه
Hibernation energetics of free-ranging little brown bats.
Hibernation physiology and energy expenditure have been relatively well studied in large captive hibernators, especially rodents, but data from smaller, free-ranging hibernators are sparse. We examined variation in the hibernation patterns of free-ranging little brown bats (Myotis lucifugus) using temperature-sensitive radio-transmitters. First, we aimed to test the hypothesis that age, sex and...
متن کاملgeothermally heated caves for winter hibernation
We report that two species of mouse-tailed bats (Rhinopoma microphyllum and R. cystops) hibernate for five months during winter in geothermally heated caves with stable high temperature (208C). While hibernating, these bats do not feed or drink, even on warm nights when other bat species are active. We used thermo-sensitive transmitters to measure the bats’ skin temperature in the natural hiber...
متن کاملChanges in Body Condition of Hibernating Bats Support the Thrifty Female Hypothesis and Predict Consequences for Populations with White-Nose Syndrome
White-nose syndrome (WNS) is a new disease of bats that has devastated populations in eastern North America. Infection with the fungus, Geomyces destructans, is thought to increase the time bats spend out of torpor during hibernation, leading to starvation. Little is known about hibernation in healthy, free-ranging bats and more data are needed to help predict consequences of WNS. Trade-offs pr...
متن کاملWhite-nose syndrome-affected little brown myotis (Myotis lucifugus) increase grooming and other active behaviors during arousals from hibernation.
White-nose syndrome (WNS) is an emerging infectious disease of hibernating bats linked to the death of an estimated 5.7 million or more bats in the northeastern United States and Canada. White-nose syndrome is caused by the cold-loving fungus Pseudogymnoascus destructans (Pd), which invades the skin of the muzzles, ears, and wings of hibernating bats. Previous work has shown that WNS-affected b...
متن کاملDifferential Expression of Mature MicroRNAs Involved in Muscle Maintenance of Hibernating Little Brown Bats, Myotis lucifugus: A Model of Muscle Atrophy Resistance
Muscle wasting is common in mammals during extended periods of immobility. However, many small hibernating mammals manage to avoid muscle atrophy despite remaining stationary for long periods during hibernation. Recent research has highlighted roles for short non-coding microRNAs (miRNAs) in the regulation of stress tolerance. We proposed that they could also play an important role in muscle ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PloS one
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2016